Search results for "PROTON CONDUCTORS"
showing 7 items of 7 documents
Nanoscale membrane electrode assemblies based on porous anodic alumina for hydrogen–oxygen fuel cell
2007
In this paper, we demonstrate that nanoscale membrane electrode assemblies, functioning in a H 2/O 2 fuel cell, can be fabricated by impregnation of anodic alumina porous membranes with Nafion® and phosphotungstic acid. Porous anodic alumina is potentially a promising material for thin-film micro power sources because of its ability to be manipulated in micro-machining operations. Alumina membranes (Whatman, 50 μm thick, and pore diameters of 200 nm) impregnated with the proton conductor were characterized by means of scanning electron microscopy, X-ray diffraction, and thermal analysis. The electrochemical characterization of the membrane electrode assemblies was carried out by recording t…
Theoretical insights into inorganic-organic intercalation products of the layered perovskite HLaNb2O7: perspectives for hybrid proton conductors
2019
The modification of metal oxide surfaces with organic moieties has been widely studied as a method of preparing organic-inorganic hybrid materials for various applications. Among the inorganic oxides, ion-exchangeable layered perovskites are particularly interesting, because of their appealing electronic and reactive properties. In particular, their protonated interlayer surface can be easily functionalized with organic groups allowing the production of stable hybrid materials. As a further step in the design of new inorganic-organic hybrid proton conductors, a combined experimental and theoretical study of two intercalated compounds (propanol and imidazole) in HLaNb2O7 is presented here. A…
Electrode–Electrolyte Compatibility in Solid-Oxide Fuel Cells: Investigation of the LSM–LNC Interface with X-ray Microspectroscopy
2015
Ca:LaNbO4 (LNC) constitutes the last real breakthrough in high-temperature proton conductors, with better chemical and mechanical stability with respect to cerate and zirconate perovskites. However, the low amount of bivalent dopant that can be hosted in the LaNbO4 matrix poses a limit to the proton concentration in the electrolyte. Using synchrotron X-ray microspectroscopy, we investigated the compatibility of annealed LNC/LSM electrolyte/cathode bilayers for proton-conducting SOFCs. The element maps are complemented by microEXAFS and microXANES, giving information on the fate of different cations after diffusion. The X-ray microspectroscopy approach described here is applied for the first…
Improvements in H2/O2 thin film fuel cell working with Porous Anodic Alumina-supported electrolytes
2009
Advances in Anodic Alumina Membranes-based fuel cell: CsH2PO4 pore-filler as proton conductor at room temperature
2009
Abstract Anodic alumina membranes (AAM) filled with cesium hydrogen phosphate proton conductor have been tested as inorganic composite electrolyte for hydrogen–oxygen thin film (≤50 μm) fuel cell (TFFC) working at low temperatures (25 °C), low humidity ( T gas = 25 °C) and low Pt loading (1 mg cm −2 ). Single module TFFC delivering a peak power of around 15–27 mW cm −2 , with open circuit voltage (OCV) of about 0.9 V and short circuit current density in the range 80–160 mA cm −2 have been fabricated. At variance with pure solid acid electrolytes showing reproducibility problems due to the scarce mechanical resistance, the presence of porous alumina support allowed to replicate similar fuel…
Cs0.86(NH41.14SO4Te(OH)6 in porous anodic alumina for micro fuel cell applications.
2011
Abstract Cs0.86(NH4)1.14SO4Te(OH)6 supported by anodic alumina membranes (AAMs) has been characterized for the first time in H2/O2 fuel cell. The fabricated membrane electrode assemblies are able to produce peak power densities in the range 15–30 mW cm−2 under mild conditions (room temperature, low humidity and low Pt loading) and show an increased durability with cycling with respect to previous results obtained with AAM-based fuel cell. The physico-chemical characterization of the electrolytes has been carried out through X-ray diffractometry, scanning electron microscopy and micro-raman analysis. An estimation of the composite membranes conductance under fuel cell operation has been carr…
Structural analysis, phase stability and electrochemical characterization of Nb doped BaCe0.9Y0.1O3−x electrolyte for IT-SOFCs
2012
Abstract To improve the chemical stability of high temperature proton conductors based on barium cerate, electrolyte powders doped with different amounts of niobium were synthesized by the citrate–nitrate auto-combustion method. Pure single phases of BaCe 0.9− x Nb x Y 0.1 O 3− x (BCYN, 0.03 ≤ x ≤ 0.12) were obtained by thermal treatment at 1000 °C. Sintering at 1450 °C for 10 h produced dense pellets. X-ray absorption spectroscopy allowed to define the dopant ion insertion site and the co-dopant valency. Treatments in pure CO 2 atmosphere at 700 °C for 3 h and subsequent XRD analysis were carried out to probe the chemical stability of the produced electrolytes. The influence of the prese…